Search results for "Parametric problem"

showing 3 items of 3 documents

A Parametric Dirichlet Problem for Systems of Quasilinear Elliptic Equations With Gradient Dependence

2016

The aim of this article is to study the Dirichlet boundary value problem for systems of equations involving the (pi, qi) -Laplacian operators and parameters μi≥0 (i = 1,2) in the principal part. Another main point is that the nonlinearities in the reaction terms are allowed to depend on both the solution and its gradient. We prove results ensuring existence, uniqueness, and asymptotic behavior with respect to the parameters.

Control and Optimization01 natural sciencesElliptic boundary value problemsymbols.namesakeDirichlet eigenvalueSettore MAT/05 - Analisi MatematicaDirichlet's principleBoundary value problemparametric problem0101 mathematicssystem of elliptic equationsMathematicsDirichlet problemDirichlet problem010102 general mathematicsMathematical analysisDirichlet's energyMathematics::Spectral Theory(pq)-LaplacianComputer Science Applications010101 applied mathematicsGeneralized Dirichlet distributionDirichlet boundary conditionSignal ProcessingsymbolsAnalysis
researchProduct

The effects of convolution and gradient dependence on a parametric Dirichlet problem

2020

Our objective is to study a new type of Dirichlet boundary value problem consisting of a system of equations with parameters, where the reaction terms depend on both the solution and its gradient (i.e., they are convection terms) and incorporate the effects of convolutions. We present results on existence, uniqueness and dependence of solutions with respect to the parameters involving convolutions.

Dirichlet problemNumerical AnalysisPartial differential equationApplied MathematicsNumerical analysisMathematical analysis(p q) -LaplacianSystem of linear equationsDirichlet distributionConvolutionConvolutionComputational Mathematicssymbols.namesakeSettore MAT/05 - Analisi MatematicasymbolsParametric problemsBoundary value problemUniquenessSystem of elliptic equationsAnalysisMathematicsDirichlet problem
researchProduct

Bounded weak solutions to superlinear Dirichlet double phase problems

2023

AbstractIn this paper we study a Dirichlet double phase problem with a parametric superlinear right-hand side that has subcritical growth. Under very general assumptions on the data, we prove the existence of at least two nontrivial bounded weak solutions to such problem by using variational methods and critical point theory. In contrast to other works we do not need to suppose the Ambrosetti–Rabinowitz condition.

Double phase operatorAlgebra and Number TheorySettore MAT/05 - Analisi MatematicaCritical point theorySuperlinear nonlinearityLocation of the solutionsMathematical PhysicsAnalysisParametric problem
researchProduct